后端代码

This commit is contained in:
xlmessage 2025-02-12 19:12:07 +08:00
parent 023cc64d20
commit 62e0ab2da7
67 changed files with 1414 additions and 485 deletions

@ -8,5 +8,12 @@
<jdbc-url>jdbc:mysql://lawyer5.cn:3308/wangche</jdbc-url>
<working-dir>$ProjectFileDir$</working-dir>
</data-source>
<data-source source="LOCAL" name="@localhost" uuid="7b52e754-e1c2-4a7c-ae09-3c939af31a22">
<driver-ref>mysql.8</driver-ref>
<synchronize>true</synchronize>
<jdbc-driver>com.mysql.cj.jdbc.Driver</jdbc-driver>
<jdbc-url>jdbc:mysql://localhost:3306</jdbc-url>
<working-dir>$ProjectFileDir$</working-dir>
</data-source>
</component>
</project>

@ -3,5 +3,5 @@
<component name="Black">
<option name="sdkName" value="Python 3.7" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (wance_data)" project-jdk-type="Python SDK" />
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (testenv) (2)" project-jdk-type="Python SDK" />
</project>

@ -4,7 +4,7 @@
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="jdk" jdkName="Python 3.11 (testenv) (2)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PackageRequirementsSettings">

Binary file not shown.

915
src/akshare_data/router.py Normal file

@ -0,0 +1,915 @@
from fastapi import APIRouter, Query, FastAPI, Body
from starlette.middleware.cors import CORSMiddleware
import akshare as ak
import pymysql
import json
from pydantic import BaseModel
from typing import List, Dict
import math
router = APIRouter() # 创建一个 FastAPI 路由器实例
# 数据库测试
@router.get("/userstrategy")
async def userstrategy():
# 创建数据库连接
conn = pymysql.connect(
host='cqxqg.tech', # MySQL服务器地址
user='wangche', # MySQL用户名
password='fN7sXX8saiQKXWbG', # MySQL密码
database='wangche', # 要连接的数据库名
port=3308,
charset='utf8mb4', # 字符集,确保支持中文等
cursorclass=pymysql.cursors.DictCursor # 使用字典形式返回结果
)
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = conn.cursor()
# 使用 execute()方法执行 SQL 查询
# 通配符 *,意思是查询表里所有内容
cursor.execute("select * from user_strategy where user_id = 100096")
# 使用 fetchone() 方法获取一行数据.
# data = cursor.fetchone()
data = cursor.fetchall()
# print(data)
# 关闭数据库连接
cursor.close()
# 将strategy_request字段中的JSON字符串转换为Python字典
for i in range(0, len(data)):
strategy_request = data[i]['strategy_request']
# 将JSON字符串转换为Python字典
data_dict = json.loads(strategy_request)
data[i]['strategy_request'] = data_dict
return data
# 定义Pydantic模型
class InfoItem(BaseModel):
code: str
name: str
market: str
newprice: float
amplitudetype: bool
amplitude: float
type: str
class MessageItem(BaseModel):
id: str
label: str
value: str
state: bool
info: List[InfoItem]
inputClass: str
fixchange: bool
class StrategyRequest(BaseModel):
id: int
strategy_name: str
message: List[MessageItem] or None
info: List[InfoItem] or None
class MyData(BaseModel):
mes: List[StrategyRequest]
# 新加的new_user_strategy数据库表
@router.post("/newuserstrategy")
async def newuserstrategy(strategy: StrategyRequest = Body(...)):
# 创建数据库连接
conn = pymysql.connect(
host='cqxqg.tech', # MySQL服务器地址
user='wangche', # MySQL用户名
password='fN7sXX8saiQKXWbG', # MySQL密码
database='wangche', # 要连接的数据库名
port=3308,
charset='utf8mb4', # 字符集,确保支持中文等
cursorclass=pymysql.cursors.DictCursor # 使用字典形式返回结果
)
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = conn.cursor()
# cursor1 = conn.cursor()
# cursor2 = conn.cursor()
# --------------------new_user_strategy数据------------------
# SQL 查询语句
sql1 = "SELECT strategy_name FROM new_user_strategy WHERE id = %s"
# 执行查询
cursor.execute(sql1, ('100096',))
# 获取所有数据
result1 = cursor.fetchall()
# 提取 strategy_name 列并转换为列表
strategy_names1 = [row['strategy_name'] for row in result1]
# print(strategy_names1)
# --------------------user_strategy数据------------------
# SQL 查询语句
sql2 = "SELECT strategy_name FROM user_strategy WHERE user_id = %s"
# 执行查询
cursor.execute(sql2, ('100096',))
# 获取所有数据
result2 = cursor.fetchall()
# 提取 strategy_name 列并转换为列表
strategy_names2 = [row['strategy_name'] for row in result2]
# print(strategy_names2)
# --------------------获取整个请求数据--------------------
request_data = strategy.dict()
# print(request_data)
# 准备SQL插入语句注意没有包含id列因为它可能是自动递增的
sql = "INSERT INTO new_user_strategy (id, strategy_name, message, info) VALUES (%s, %s, %s, %s)"
# 要插入的数据(确保数据类型与数据库表列匹配)
# 将message和info转换为JSON字符串
import json
message_json = json.dumps(request_data['message'])
info_json = json.dumps(request_data['info'])
values = (request_data['id'], request_data['strategy_name'], message_json, info_json)
# 是否进行写入数据库表中
set_strategy_names1 = set(strategy_names1)
set_strategy_names2 = set(strategy_names2)
if request_data['strategy_name'] in strategy_names1:
# print("信息已存在")
conn.close()
else:
# 执行SQL语句
cursor.execute(sql, values)
# 提交事务到数据库执行
conn.commit()
print("数据插入成功")
# 关闭数据库连接
conn.close()
return {"message": "数据插入成功"}
# for i in range(0, len(result2)):
# if result2[i] not in strategy_names1:
# # 执行SQL语句
# cursor.execute(sql, values)
# # 提交事务到数据库执行
# conn.commit()
# print("数据插入成功")
# # 关闭数据库连接
# conn.close()
# return {"message": "数据插入成功"}
# conn.close()
@router.post("/newadd")
async def newadd(strategy: StrategyRequest = Body(...)):
conn = pymysql.connect(
host='cqxqg.tech', # MySQL服务器地址
user='wangche', # MySQL用户名
password='fN7sXX8saiQKXWbG', # MySQL密码
database='wangche', # 要连接的数据库名
port=3308,
charset='utf8mb4', # 字符集,确保支持中文等
cursorclass=pymysql.cursors.DictCursor # 使用字典形式返回结果
)
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = conn.cursor()
# SQL 查询语句
sql1 = "SELECT strategy_name FROM new_user_strategy WHERE id = %s"
# 执行查询
cursor.execute(sql1, ('100096',))
# 获取所有数据
result1 = cursor.fetchall()
# 获取整个请求数据
request_data = strategy.dict()
print(request_data)
import json
message_json = json.dumps(request_data['message'])
info_json = json.dumps(request_data['info'])
print(result1)
for item in result1:
if request_data['strategy_name'] == item['strategy_name']:
return {
"code": 204,
"message": "该分组已经存在"
}
sql = "INSERT INTO new_user_strategy (id, strategy_name, message, info) VALUES (%s, %s, %s, %s)"
# # 执行 SQL
cursor.execute(sql, (request_data["id"], request_data['strategy_name'], message_json, info_json))
#
# # 提交事务到数据库执行
conn.commit()
# print("更新数据成功")
# 关闭数据库连接
conn.close()
return {
"code": 200,
"message": "新建分组成功!"
}
# 获取数据
@router.get("/newget")
async def newget():
# 创建数据库连接
conn = pymysql.connect(
host='cqxqg.tech', # MySQL服务器地址
user='wangche', # MySQL用户名
password='fN7sXX8saiQKXWbG', # MySQL密码
database='wangche', # 要连接的数据库名
port=3308,
charset='utf8mb4', # 字符集,确保支持中文等
cursorclass=pymysql.cursors.DictCursor # 使用字典形式返回结果
)
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = conn.cursor()
# 使用 execute()方法执行 SQL 查询
# 通配符 *,意思是查询表里所有内容
cursor.execute("select * from new_user_strategy where id = 100096")
# 使用 fetchone() 方法获取一行数据.
# data = cursor.fetchone()
data = cursor.fetchall()
# print(data)
# 关闭数据库连接
cursor.close()
# 将strategy_request字段中的JSON字符串转换为Python字典
for i in range(0, len(data)):
strategy_request1 = data[i]['message']
strategy_request2 = data[i]['info']
# 将JSON字符串转换为Python字典
data_dict1 = json.loads(strategy_request1)
data_dict2 = json.loads(strategy_request2)
data[i]['message'] = data_dict1
data[i]['info'] = data_dict2
return {
"code": 200,
"data": data
}
# 新增分组
@router.post("/newupdata")
async def newupdata(strategy: StrategyRequest = Body(...)):
# 创建数据库连接
conn = pymysql.connect(
host='cqxqg.tech', # MySQL服务器地址
user='wangche', # MySQL用户名
password='fN7sXX8saiQKXWbG', # MySQL密码
database='wangche', # 要连接的数据库名
port=3308,
charset='utf8mb4', # 字符集,确保支持中文等
cursorclass=pymysql.cursors.DictCursor # 使用字典形式返回结果
)
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = conn.cursor()
# 获取整个请求数据
request_data = strategy.dict()
print(request_data)
import json
message_json = json.dumps(request_data['message'])
info_json = json.dumps(request_data['info'])
# SQL 语句
sql = """
UPDATE new_user_strategy
SET message = %s, info = %s
WHERE strategy_name = %s;
"""
# 执行 SQL
cursor.execute(sql, (message_json, info_json, request_data['strategy_name']))
# 提交事务到数据库执行
conn.commit()
print("更新数据成功")
# 关闭数据库连接
conn.close()
return "更新成功"
class delItem(BaseModel):
strategy_name: str
# 删除分组
@router.post("/newdel")
async def newdel(delitem: delItem):
delitem = delitem.strategy_name
# 创建数据库连接
conn = pymysql.connect(
host='cqxqg.tech', # MySQL服务器地址
user='wangche', # MySQL用户名
password='fN7sXX8saiQKXWbG', # MySQL密码
database='wangche', # 要连接的数据库名
port=3308,
charset='utf8mb4', # 字符集,确保支持中文等
cursorclass=pymysql.cursors.DictCursor # 使用字典形式返回结果
)
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = conn.cursor()
sql1 = "DELETE FROM new_user_strategy WHERE strategy_name = %s"
sql2 = "DELETE FROM user_strategy WHERE strategy_name = %s"
cursor.execute(sql1, (delitem,))
cursor.execute(sql2, (delitem,))
# 提交事务到数据库执行
conn.commit()
print("数据删除成功")
# 关闭数据库连接
conn.close()
return "删除成功"
@router.get("/newmodify")
async def newmodify(
strategy_name: str = Query(..., description="原始值"),
new_strategy_name: str = Query(..., description="更改值")
):
print(strategy_name)
print(new_strategy_name)
# return "success"
# pass
# 创建数据库连接
conn = pymysql.connect(
host='cqxqg.tech', # MySQL服务器地址
user='wangche', # MySQL用户名
password='fN7sXX8saiQKXWbG', # MySQL密码
database='wangche', # 要连接的数据库名
port=3308,
charset='utf8mb4', # 字符集,确保支持中文等
cursorclass=pymysql.cursors.DictCursor # 使用字典形式返回结果
)
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = conn.cursor()
# 更新 strategy_name
update_sql = "UPDATE new_user_strategy SET strategy_name = %s WHERE strategy_name = %s"
cursor.execute(update_sql, (new_strategy_name, strategy_name))
# 提交事务到数据库执行
conn.commit()
print("重命名成功")
# 关闭数据库连接
conn.close()
return "重命名成功"
# 侧边栏webview数据
@router.post("/asidestrinfo/")
async def asidestrinfo():
pass
# 股票数据
stock_data = None
@router.get("/stock")
async def stock(
symbol: str = Query(..., description="股票代码"),
start_date: str = Query(..., description="起始日期"),
end_date: str = Query(..., description="结束日期"),
):
# 获取股票日线行情数据
# print(symbol, start_date, end_date)
# print(symbol)
global stock_data
try:
stock_zh_a_daily_df = ak.stock_zh_a_daily(symbol=symbol, start_date=start_date, end_date=end_date, adjust="qfq")
# 获取所有的code
all_dates = stock_zh_a_daily_df['date']
# 如果你想要一个列表而不是Pandas Series
dates_list = all_dates.tolist()
all_opens = stock_zh_a_daily_df['open']
opens_list = all_opens.tolist()
cleaned_opens_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in opens_list
]
all_closes = stock_zh_a_daily_df['close']
close_list = all_closes.tolist()
cleaned_close_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in close_list
]
all_highs = stock_zh_a_daily_df['high']
high_list = all_highs.tolist()
cleaned_high_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in high_list
]
all_lows = stock_zh_a_daily_df['low']
low_list = all_lows.tolist()
cleaned_low_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in low_list
]
all_volumes = stock_zh_a_daily_df['volume']
volume_list = all_volumes.tolist()
cleaned_volume_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in volume_list
]
all_amounts = stock_zh_a_daily_df['amount']
amount_lists = all_amounts.tolist()
cleaned_amount_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in amount_lists
]
global stock_data
stock_data = {
"amount": cleaned_amount_list,
"close": cleaned_close_list,
"date": dates_list,
"high": cleaned_high_list,
"low": cleaned_low_list,
"open": cleaned_opens_list,
"outstanding_share": [],
"turnover": [],
"volume": cleaned_volume_list
}
except Exception as e:
print(e)
print("无法使用该方式请求股票数据当前股票可能不是A股")
stock_data = {
"amount": [],
"close": [],
"date": [],
"high": [],
"low": [],
"open": [],
"outstanding_share": [],
"turnover": [],
"volume": []
}
finally:
return {"message": stock_data}
# 前端获取数据接口
@router.get("/kdata")
async def kdata():
global stock_data
if stock_data is None:
stock_data = {
"amount": [],
"close": [],
"date": [],
"high": [],
"low": [],
"open": [],
"outstanding_share": [],
"turnover": [],
"volume": []
}
return {"message": stock_data}
else:
return {"message": stock_data}
# ---------------------------------------------------------------------
# 港股代码数据
@router.get("/ganggudata")
async def ganggudata():
stock_hk_spot_em_df = ak.stock_hk_spot_em()
# print(stock_hk_spot_em_df)
# 获取所有的code
all_codes = stock_hk_spot_em_df['代码']
# 如果你想要一个列表而不是Pandas Series
codes_list = all_codes.tolist()
all_names = stock_hk_spot_em_df['名称']
names_list = all_names.tolist()
all_prices = stock_hk_spot_em_df['最新价']
price_list = all_prices.tolist()
# 清理非法浮点数值NaN, Infinity, -Infinity
cleaned_price_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in price_list
]
all_amplitudes = stock_hk_spot_em_df['涨跌幅']
amplitudes_list = all_amplitudes.tolist()
# 清理非法浮点数值NaN, Infinity, -Infinity
cleaned_amplitudes_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in amplitudes_list
]
# 返回的数据
ggstocking = []
for i in range(9):
if cleaned_price_list[i] >= 0:
flag = True
else:
flag = False
ggstocking.append({
'code': codes_list[i],
'name': names_list[i],
'market': '港股',
'newprice': cleaned_price_list[i],
'amplitudetype': flag,
'amplitude': cleaned_amplitudes_list[i],
'type': 'ganggu'
})
# 返回清理后的列表
return ggstocking
# 港股K线图历史数据
@router.get("/ganggudataK")
async def ganggudataK(
symbol: str = Query(..., description="股票代码"),
start_date: str = Query(..., description="起始日期"),
end_date: str = Query(..., description="结束日期"),
):
try:
stock_hk_hist_df = ak.stock_hk_hist(symbol=symbol, period="daily", start_date=start_date, end_date=end_date,
adjust="")
# 获取所有的code
all_dates = stock_hk_hist_df['日期']
# 如果你想要一个列表而不是Pandas Series
dates_list = all_dates.tolist()
all_opens = stock_hk_hist_df['开盘']
opens_list = all_opens.tolist()
cleaned_opens_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in opens_list
]
all_closes = stock_hk_hist_df['收盘']
close_list = all_closes.tolist()
cleaned_close_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in close_list
]
all_highs = stock_hk_hist_df['最高']
high_list = all_highs.tolist()
cleaned_high_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in high_list
]
all_lows = stock_hk_hist_df['最低']
low_list = all_lows.tolist()
cleaned_low_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in low_list
]
all_volumes = stock_hk_hist_df['成交量']
volume_list = all_volumes.tolist()
cleaned_volume_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in volume_list
]
all_amounts = stock_hk_hist_df['成交额']
amount_list = all_amounts.tolist()
cleaned_amount_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in amount_list
]
global stock_data
stock_data = {
"amount": cleaned_amount_list,
"close": cleaned_close_list,
"date": dates_list,
"high": cleaned_high_list,
"low": cleaned_low_list,
"open": cleaned_opens_list,
"outstanding_share": [],
"turnover": [],
"volume": cleaned_volume_list
}
except Exception as e:
print(e)
stock_data = {
"amount": [],
"close": [],
"date": [],
"high": [],
"low": [],
"open": [],
"outstanding_share": [],
"turnover": [],
"volume": []
}
finally:
return {"message": stock_data}
# ---------------------------------------------------------------------
# 美股代码数据
@router.get("/meigudata")
async def meigudata():
stock_us_spot_em_df = ak.stock_us_spot_em()
# print(stock_us_spot_em_df)
all_codes = stock_us_spot_em_df['代码']
# 如果你想要一个列表而不是Pandas Series
codes_list = all_codes.tolist()
all_names = stock_us_spot_em_df['名称']
names_list = all_names.tolist()
all_prices = stock_us_spot_em_df['最新价']
price_list = all_prices.tolist()
# 清理非法浮点数值NaN, Infinity, -Infinity
cleaned_price_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in price_list
]
all_amplitudes = stock_us_spot_em_df['涨跌幅']
amplitudes_list = all_amplitudes.tolist()
# 清理非法浮点数值NaN, Infinity, -Infinity
cleaned_amplitudes_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in amplitudes_list
]
# 返回的数据
mgstocking = []
for i in range(9):
if cleaned_price_list[i] >= 0:
flag = True
else:
flag = False
mgstocking.append({
'code': codes_list[i],
'name': names_list[i],
'market': '港股',
'newprice': cleaned_price_list[i],
'amplitudetype': flag,
'amplitude': cleaned_amplitudes_list[i],
'type': 'meigu'
})
# 返回清理后的列表
return mgstocking
# 美股K线图历史数据
@router.get("/meigudataK")
async def meigudataK(
symbol: str = Query(..., description="股票代码"),
start_date: str = Query(..., description="起始日期"),
end_date: str = Query(..., description="结束日期"),
):
try:
stock_us_hist_df = ak.stock_us_hist(symbol=symbol, period="daily", start_date=start_date, end_date=end_date,
adjust="qfq")
# 获取所有的code
all_dates = stock_us_hist_df['日期']
# 如果你想要一个列表而不是Pandas Series
dates_list = all_dates.tolist()
all_opens = stock_us_hist_df['开盘']
opens_list = all_opens.tolist()
cleaned_opens_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in opens_list
]
all_closes = stock_us_hist_df['收盘']
close_list = all_closes.tolist()
cleaned_close_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in close_list
]
all_highs = stock_us_hist_df['最高']
high_list = all_highs.tolist()
cleaned_high_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in high_list
]
all_lows = stock_us_hist_df['最低']
low_list = all_lows.tolist()
cleaned_low_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in low_list
]
all_volumes = stock_us_hist_df['成交量']
volume_list = all_volumes.tolist()
cleaned_volume_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in volume_list
]
all_amounts = stock_us_hist_df['成交额']
amount_list = all_amounts.tolist()
cleaned_amount_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in amount_list
]
global stock_data
stock_data = {
"amount": cleaned_amount_list,
"close": cleaned_close_list,
"date": dates_list,
"high": cleaned_high_list,
"low": cleaned_low_list,
"open": cleaned_opens_list,
"outstanding_share": [],
"turnover": [],
"volume": cleaned_volume_list
}
except Exception as e:
print(e)
stock_data = {
"amount": [],
"close": [],
"date": [],
"high": [],
"low": [],
"open": [],
"outstanding_share": [],
"turnover": [],
"volume": []
}
finally:
return {"message": stock_data}
# ---------------------------------------------------------------------
# 沪深代码数据
@router.get("/hushendata")
async def hushendata():
try:
stock_zh_a_spot_df = ak.stock_kc_a_spot_em()
except Exception as e:
print(e)
# print(stock_zh_a_spot_df)
all_codes = stock_zh_a_spot_df['代码']
# 如果你想要一个列表而不是Pandas Series
codes_list = all_codes.tolist()
all_names = stock_zh_a_spot_df['名称']
names_list = all_names.tolist()
all_prices = stock_zh_a_spot_df['最新价']
price_list = all_prices.tolist()
# 清理非法浮点数值NaN, Infinity, -Infinity
cleaned_price_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in price_list
]
all_amplitudes = stock_zh_a_spot_df['涨跌幅']
amplitudes_list = all_amplitudes.tolist()
# 清理非法浮点数值NaN, Infinity, -Infinity
cleaned_amplitudes_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in amplitudes_list
]
# 返回的数据
hsstocking = []
# for i in range(len(codes_list)):
# if cleaned_price_list[i] >= 0:
# flag = True
# else:
# flag = False
# hsstocking.append({
# 'code': codes_list[i],
# 'name': names_list[i],
# 'market': '港股',
# 'newprice': cleaned_price_list[i],
# 'amplitudetype': flag,
# 'amplitude': cleaned_amplitudes_list[i],
# })
for i in range(9):
if cleaned_price_list[i] >= 0:
flag = True
else:
flag = False
hsstocking.append({
'code': codes_list[i],
'name': names_list[i],
'market': '港股',
'newprice': cleaned_price_list[i],
'amplitudetype': flag,
'amplitude': cleaned_amplitudes_list[i],
'type': 'hushen'
})
# 返回清理后的列表
return hsstocking
@router.get("/hushendataK")
async def hushendataK(
symbol: str = Query(..., description="股票代码"),
start_date: str = Query(..., description="起始日期"),
end_date: str = Query(..., description="结束日期"),
):
try:
stock_zh_a_daily_qfq_df = ak.stock_zh_a_daily(symbol='sh' + symbol, start_date=start_date, end_date=end_date,
adjust="qfq")
# 获取所有的code
all_dates = stock_zh_a_daily_qfq_df['date']
# 如果你想要一个列表而不是Pandas Series
dates_list = all_dates.tolist()
all_opens = stock_zh_a_daily_qfq_df['open']
opens_list = all_opens.tolist()
cleaned_opens_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in opens_list
]
all_closes = stock_zh_a_daily_qfq_df['close']
close_list = all_closes.tolist()
cleaned_close_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in close_list
]
all_highs = stock_zh_a_daily_qfq_df['high']
high_list = all_highs.tolist()
cleaned_high_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in high_list
]
all_lows = stock_zh_a_daily_qfq_df['low']
low_list = all_lows.tolist()
cleaned_low_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in low_list
]
all_volumes = stock_zh_a_daily_qfq_df['volume']
volume_list = all_volumes.tolist()
cleaned_volume_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in volume_list
]
all_amounts = stock_zh_a_daily_qfq_df['amount']
amount_lists = all_amounts.tolist()
cleaned_amount_list = [
value if not (math.isnan(value) or math.isinf(value)) else 0.00
for value in amount_lists
]
global stock_data
stock_data = {
"amount": cleaned_amount_list,
"close": cleaned_close_list,
"date": dates_list,
"high": cleaned_high_list,
"low": cleaned_low_list,
"open": cleaned_opens_list,
"outstanding_share": [],
"turnover": [],
"volume": cleaned_volume_list
}
except Exception as e:
print(e)
stock_data = {
"amount": [],
"close": [],
"date": [],
"high": [],
"low": [],
"open": [],
"outstanding_share": [],
"turnover": [],
"volume": []
}
finally:
return {"message": stock_data}

@ -0,0 +1,6 @@
from fastapi import FastAPI,Query
from starlette.middleware.cors import CORSMiddleware
import akshare as ak
async def get_day_k_data():
pass

@ -1,3 +1,4 @@
3
from typing import Any
from fastapi import FastAPI, HTTPException, Request, status

@ -8,7 +8,7 @@ from src.responses import response_list_response
financial_reports_router = APIRouter()
@financial_reports_router.post("/query")
async def financial_repoets_query(request: FinancialReportQuery )-> JSONResponse:
async def financial_repoets_query(request: FinancialReportQuery) -> JSONResponse:
"""
搜索接口
"""

@ -11,7 +11,6 @@ import asyncio
from fastapi import FastAPI
from datetime import datetime
from starlette.middleware.cors import CORSMiddleware
from src.exceptions import register_exception_handler
@ -25,11 +24,13 @@ from src.financial_reports.router import financial_reports_router
from src.utils.generate_pinyin_abbreviation import generate_pinyin_abbreviation
from src.composite.router import composite_router
from src.akshare_data.router import router as akshare_data_router
from xtquant import xtdata
from src.settings.config import app_configs, settings
import adata
import akshare as ak
# import adata
# import akshare as ak
app = FastAPI(**app_configs)
@ -43,6 +44,7 @@ app.include_router(backtest_router, prefix="/backtest", tags=["回测接口"])
app.include_router(combine_router, prefix="/combine", tags=["组合接口"])
app.include_router(financial_reports_router, prefix="/financial-reports", tags=["财报接口"])
app.include_router(composite_router, prefix="/composite", tags=["vacode组合接口"])
app.include_router(akshare_data_router, prefix="/akshare", tags=["数据接口"])
if settings.ENVIRONMENT.is_deployed:
sentry_sdk.init(
@ -52,11 +54,14 @@ if settings.ENVIRONMENT.is_deployed:
app.add_middleware(
CORSMiddleware,
allow_origins=settings.CORS_ORIGINS,
allow_origin_regex=settings.CORS_ORIGINS_REGEX,
# allow_origins=settings.CORS_ORIGINS,
# allow_origin_regex=settings.CORS_ORIGINS_REGEX,
allow_origins=["*"],
allow_origin_regex=None,
allow_credentials=True,
allow_methods=("GET", "POST", "PUT", "PATCH", "DELETE", "OPTIONS"),
allow_headers=settings.CORS_HEADERS,
# allow_headers=settings.CORS_HEADERS,
allow_headers=["*"], # 允许所有请求头
)
@ -64,12 +69,13 @@ app.add_middleware(
async def root():
return {"message": "Hello, FastAPI!"}
# 定时检查和数据抓取函数
async def run_data_fetcher():
print("财报抓取启动")
while True:
# 获取数据库中最新记录的时间
latest_record = await FinancialReport .all().order_by("-created_at").first()
latest_record = await FinancialReport.all().order_by("-created_at").first()
latest_db_date = latest_record.created_at if latest_record else pd.Timestamp("1970-01-01")
# 将最新数据库日期设为无时区,以便比较
@ -88,6 +94,7 @@ async def run_data_fetcher():
# 休眠 12 小时43200 秒),然后再次检查
await asyncio.sleep(43200)
async def test_liang_hua_ku():
print("量化库测试函数启动")
@ -100,6 +107,5 @@ async def lifespan():
asyncio.create_task(run_data_fetcher())
if __name__ == "__main__":
uvicorn.run('src.main:app', host="0.0.0.0", port=8012, reload=True)
uvicorn.run('src.main:app', host="127.0.0.1", port=8012, reload=True)

@ -44,9 +44,3 @@ app_configs: dict[str, Any] = {
"docs_url": "/api/docs",
}
# app_configs['debug'] = True
# if settings.ENVIRONMENT.is_deployed:
# app_configs["root_path"] = f"/v{settings.APP_VERSION}"
#
# if not settings.ENVIRONMENT.is_debug:
# app_configs["openapi_url"] = None # hide docs